XII ASSIGNMENT INVERSE TRIGONOMETRIC FUNCTION

1. Find the principal values of the following
(a) $\sin ^{-1}-1$
(b) $\sec ^{-1} \frac{2}{\sqrt{3}}$
(c) $\sin ^{-1}-\frac{\sqrt{3}}{2}$.
2. Evaluate the following
$\begin{array}{ll}\text { (a) } \sin ^{-1} \sin \frac{5 \pi}{6} & \text { (b) } \cos \left[\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)+\frac{\pi}{6}\right]\end{array}$
3. Prove that $\cos ^{-1} x=2 \quad \sin ^{-1} \sqrt{\frac{1-x}{2}}$
4. Prove that $\tan ^{-1} x=\sin ^{-1} \frac{x}{\sqrt{x^{2}+1}}$
5. Simplify Prove that $\cos ^{-1} \quad x=2 \quad \sin ^{-1} \sqrt{\frac{1-x}{2}}$
6. Write in the simplest form

$$
\tan ^{-1} \frac{\sqrt{1+x^{2}-1}}{x}
$$

7. Write in the simplest form

$$
\tan ^{-1} \frac{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}{\frac{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}{}}
$$

8. Write the following in the simplest form

$$
\sin ^{-1}\left[\begin{array}{ll}
x \sqrt{1-x} & -\sqrt{x} \sqrt{1-x^{2}}
\end{array}\right]
$$

9. Prove that $\tan ^{-1} 5-\tan ^{-1} 3+\tan ^{-1} \frac{7}{9}=\frac{\pi}{4}$.
10. Prove that $\tan ^{-1} \frac{1}{4}-\tan ^{-1} \frac{2}{9} \quad=\frac{1}{2} \cos ^{-1} \frac{3}{5}$.
11. Prove that $\tan ^{-1} \frac{63}{16}-\sin ^{-1} \frac{5}{13}=\cos ^{-1} \frac{3}{5}$.
12. Prove that $\tan ^{-1} \frac{27}{11}-\cos ^{-1} \frac{4}{5}=\tan ^{-1} \frac{3}{5}$.
13. Solve for x,

$$
\tan ^{-1} \frac{1}{1+2 x}-\tan ^{-1} \frac{1}{4 x+1}=\tan ^{-1} \frac{2}{x^{2}} .
$$

14. Solve for x,

$$
\tan ^{-1} \frac{x-1}{x+1}-\tan ^{-1} \frac{2 x-1}{2 x+1}=\tan ^{-1} \frac{23}{36} .
$$

15.If $\cos ^{-1} \frac{x}{a}+\cos ^{-1} \frac{y}{b}=\theta$ then Prove that $\frac{x^{2}}{a^{2}}-\frac{2 x y}{a b} \cos \theta+\frac{y^{2}}{b^{2}}=(\sin \theta)^{2}$

